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Abstract

The next token prediction loss is the dominant001
self-supervised training objective for large lan-002
guage models and has achieved promising re-003
sults across a variety of downstream tasks.004
However, upon closer investigation of this ob-005
jective, we find that it lacks an understand-006
ing of sequence-level signals, leading to a mis-007
match between the training and inference pro-008
cesses. To bridge this gap, we introduce a009
contrastive preference optimization procedure010
that can inject sequence-level signals into the011
language model at any training stage with-012
out expensive human labeling. Notably, our013
experiments revealed that the proposed ob-014
jective surpasses the next-token prediction in015
terms of GPT winning rate on both instruction-016
following and text generation. Specifically,017
using OpenLlama-3B, our method achieves a018
13% improvement on an instruction-following019
task, and a 3% increase on a text generation020
task.021

1 Introduction022

Next token prediction 1 is now the prevalent way023

to the pretraining and supervised finetuning (SFT)024

of large language models (LLM). This loss func-025

tion can be easily scaled up to train models with026

trillions of parameters and tokens, and it has also027

demonstrated the ability to generate coherent and028

contextually relevant text. Let P be the unknown029

target language distribution and Q be the distri-030

bution of our model at hand. The goal of next031

token prediction is to minimize the forward-KL di-032

vergence between P and Q; during test time, we033

usually first generate a set of samples using the034

trained model, and evaluate the quality of these035

generations using a certain metric 2, for example036

1This term is subsequently used interchangeably with max-
imum likelihood estimation (MLE).

2Metric in the sense of a quality measure, rather than the
mathematical concept.

the reverse-KL. This training process only super- 037

vise on predicting one token at a time given the full 038

context from groundtruth. On the other hand during 039

inference, the model needs to generate a whole se- 040

quence (for a given prompt) relying on its own prior 041

predictions. This mismatch between the training 042

and inference stage is also known as exposure-bias 043

in the literature of RNN and sequence-to-sequence 044

model (Bengio et al., 2015; Ranzato et al., 2015). 045

In other words, the next token prediction based 046

training injects only token-level information into 047

the model, but missing sequence-level signal. Of 048

course, such discrepancies can be mitigated by 049

the subsequent reinforcement learning with human 050

feedback (RLHF) step (Ouyang et al., 2022) in 051

LLM training. In RLHF, a reward signal is en- 052

forced on the generated sequence of the language 053

model and guides the model generation to align 054

with human preference. RLHF is computationally 055

intensive and often faces instability issues. There- 056

fore, many open-sourced LLMs do not incorpo- 057

rate this discipline. Direct preference optimization 058

(DPO) (Rafailov et al., 2023) is a recently pro- 059

posed alternative to RLHF, that enables sequence- 060

level LLM training without the need for costly 061

model generations. One drawback of both DPO 062

and RLHF methods is that they require expensive 063

human labeling to score the LLM training samples. 064

RLHF requires human preference data to train the 065

reward-model, and DPO-training requires a super- 066

vised pair of positive and negative completions for 067

each given prompt. However, the majority of ex- 068

isting LLM training data does not consist of such 069

human preference information. Therefore, in this 070

work, we ask the following question: 071

Can we introduce sequence-level information in 072

LLM training even in the absence of 073

human-preference data? 074

We answer the question affirmatively with 075

our proposed CONTRASTIVE PREFERENCE 076
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OPTIMIZATION (CPO) method. CPO shares077

a similar principle to RLHF/DPO in the sense078

that they all parameterize (perhaps implicitly)079

the optimal model (with respect to a certain080

sequence-level signal) with an energy-based model081

(EBM). However, the goal of CPO is not for082

alignment, but for generation quality. Therefore083

unlike RLHF and DPO, the proposed CPO method084

does not require human preference information085

as the training signal. Another related method086

that optimizes the language quality is BRIO (Liu087

et al., 2022). Although unlike BRIO, the proposed088

CPO method does not rely on autoregressively089

sampled negative sequences from the model, and090

therefore is much more computational efficient091

and easier to scale up. The experiments in this092

paper demonstrate that CPO is able to improve the093

quality of text generation in terms of reward model094

scores and reverse-KL divergence.095

2 Related work096

LLMs trained with next token prediction loss (Rad-097

ford et al., 2019; Chung et al., 2022; Sanh et al.,098

2021; Zhou et al., 2023) have demonstrated many099

fascinating capabilities, including the ability to per-100

form zero-shot or few-shot tasks (Radford et al.,101

2019; Brown et al., 2020), the ability to improve the102

robustness of visual learning in multimodal models103

(Menon and Vondrick, 2022; Feng et al., 2023),104

and the ability to reason (Wei et al., 2022).105

Several works have investigated the shortcom-106

ing of MLE and exposure bias. Arora et al. (2022)107

measured the error accumulation of language gen-108

eration due to exposure bias. Schmidt (2019) con-109

nected exposure bias to generalization. Wang and110

Sennrich (2020) studied how exposure bias leads to111

hallucination in neural machine translation. To mit-112

igate exposure bias, there exists a long line of work113

that have explored sequence level training meth-114

ods. Bengio et al. (2015); Ranzato et al. (2015)115

proposed to train RNN with RL or RL-related al-116

gorithms rather than teacher-forcing. BRIO Liu117

et al. (2022) targeted the summarization task with118

the ROUGE signal. Pang and He (2020) trained the119

language models with an offline learning algorithm.120

Recently, RLHF (Stiennon et al., 2020; Ouyang121

et al., 2022) is developed. While the primary goal122

of RLHF for model alignment, it is effectively a123

sequence-level training technique. For the RLHF124

training, we usually need to gather a pair of con-125

tinuations for each prefix, where one continuation126

aligns with human preference and the other does 127

not. This pair of sequences is used to train a reward 128

model, which is later used to supervise the samples 129

generated by the RL-trained model. The model 130

is typically optimized by REINFOCE (Williams, 131

1992) or PPO (Schulman et al., 2017). 132

RLHF process is also closed related to energy- 133

based models (EBM) (Korbak et al., 2022), and 134

RLHF training can be reframed as a supervised 135

learning algorithm coined as direct preference op- 136

timization (DPO) (Rafailov et al., 2023) under the 137

assumption of the Bradley-Terry model (Bradley 138

and Terry, 1952) or Plackett-Luce model (Plack- 139

ett, 1975; Luce, 2012). The particular formula- 140

tion of the EBM that minimizes the RLHF objec- 141

tive exactly mimics the formulation in Deng et al. 142

(2020), with the reward function being the energy. 143

However, Deng et al. (2020) directly formulate the 144

EBM as a language model, which is computation- 145

ally heavy for sampling and inference (due to the 146

estimation of the partition function). This EBM 147

form has also been studied in controlled text gen- 148

eration. Kumar et al. (2022) adopted the Langevin 149

dynamics technique to directly sample from the 150

EBM, with different energy functions that charac- 151

terize toxicity, fluency, and diversity. These meth- 152

ods can all be viewed as sequence-level algorithms 153

for different purposes. 154

3 Preliminary 155

Notation Consider a sentence of T tokens x = 156

{x1, . . . , xT } ∈ X , and let P be the unknown tar- 157

get language distribution, P̃ (x) be the empirical 158

distribution of the training data (which is an ap- 159

proximation of P ), and Q be the distribution of 160

our model at hand. Since our paper is also closely 161

related to RLHF, we will also use π to represent the 162

distributions. In particular, we sometimes write πθ 163

for a distribution that is parameterized by θ, where 164

θ is usually a subset of trainable parameters of the 165

LLM; we write πref for a reference distribution 166

that should be clear given the context. The next 167

token prediction loss is minimizing the forward-KL 168

between P and Q. 169

Forward-KL vs. reverse-KL The forward-KL 170

is formally defined as the following: 171

2



argmin
Q

DKL(P ||Q)

≈ argmin
Q

DKL(P̃ ||Q)

= argmin
Q

− 1

|X |
∑
x∈X

logQ(x).

172

Since we are only optimizing Q, minimizing the173

forward-KL is equivalent to the maximum likeli-174

hood estimation (MLE) max logQ(X). Further175

decomposing Q(x) =
∏
iQ(xi|xi−11 ), we get the176

next token prediction loss function177

argmax
Q

∑
x∈X

∑
xt∈x

logQ(xt|xt−11 ). (1)178

To actually measure the quality of the gener-179

ated text, typically we will first generate several180

sequences and then evaluate the quality of these181

generated sequences. Here we look closely at the182

reverse-KL:183

DKL(Q||P ) =
∑
x∈X

Q(x) log

(
Q(x)

P (x)

)
, (2)184

however, since x ∼ Q, and we do not have access185

to P , the reverse-KL cannot be computed exactly.186

The equivalence of RLHF and EBM For the187

completeness of this paper, we include the result188

on the equivalence between RLHF and EBM. For189

the full proofs, we refer the reader to (Rafailov190

et al., 2023; Korbak et al., 2022).191

The RLHF objective is the following:192

max
πθ

Ex∼D,y∼πθ(y|x)[r(x,y)]

− βDKL

(
πθ(y|x)||πref(y|x)

)
,

(3)193

where x ∼ D is a given prefix, y ∼ πθ(y|x) is a194

sampled continuation from the model at training195

πθ. Meanwhile we want to control the divergence196

between πθ and πref , the latter is usually an al-197

ready pretrained or finetuned LLM. Its optimum is198

achieved at the following EBM:199

π∗(y|x) = 1

Z(x)
πref(y|x) exp

(
1

β
r(x,y)

)
,

(4)

200

where Z(x) =
∑

y πref(y|x) exp
(

1
β r(x,y)

)
is201

the partition function.202

4 Our approach 203

While the RL penalty with KL control eq. (3) is 204

widely adopted in RLHF, it can also be used di- 205

rectly to train LLMs: instead of a preference re- 206

ward r(·), we can use any metric that measures 207

general text qualities, including ROUGE, BLEU, 208

MAUVE, etc. The benefit of eq. (3) over eq. (1) 209

is that r guides the model over a whole sequence 210

y, rather than just a single token. This motivates 211

our work to investigate the possibility of using such 212

objective in pretraining and SFT stage of LLMs. 213

Following Rafailov et al. (2023), we assume that 214

the preference over two sequences yw and yl given 215

x is parameterized by the Bradley-Terry model: 216

P (yw � yl) =
er(x,yw)

er(x,yl) + er(x,yw)
. 217

The optimal policy π∗ takes the aforementioned 218

EBM form eq. (4). and this EBM reprametriza- 219

tion establish the equivalence between the original 220

RLHF object eq. (3) and the following supervised 221

objective: 222

LDPO(πθ;πref) =

E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log πθ(yl | x)
πref(yl | x)

)]
,

(5) 223

where σ(·) is the Sigmoid function. 224

We can also generalize the formulation to the 225

Plackett-Luce model, where we have a linear order- 226

ing τ(·) among K sequences: 227

LDPO (πθ, πref) =

E
τ,x∼D
y1,...,yK

log
K∏
k=1

exp

(
β log

πθ(yτ(k)|x)
πref(yτ(k)|x)

)
∑K

j=k exp

(
β log

πθ(yτ(j)|x)
πref(yτ(j)|x)

)
 .
(6) 228

Here, τ(1), . . . , τ(K) induce a ranking among K 229

sequences. To ease the notation, from now on, we 230

always assume that y1 ∼ D is the natural text 231

appeared in the training data. 232

Investigating the DPO objective, we notice two 233

caveats for its use in the pretraining and SFT stages: 234

1. We need human labelers to gather yl ∼ D. 235

2. There may not be a natural ranking among neg- 236

ative sequences y2, . . .yK in terms of text quality. 237

To tackle the first point, we sample yl ∼ A where 238
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A is some noise distribution where it is cheap to239

sample; to tackle the second point, we provide a240

variant objective that models a “best-of-K” event:241

y1 is the best among K sequences, rather than a242

linear ordering event yτ(1) � yτ(2) � . . . � yτ(K).243

These modifications lead to our proposed CPO ob-244

jective:245

LCPO (πθ, πref) =

E
(x,y1)∼D

y2,...,yK∼A

log
exp

(
β log

πθ(y1|x)
πref(y1|x)

)
∑K

j=1 exp

(
β log

πθ(yj |x)
πref(yj |x)

)
 .
(7)

246

If ranking information is desired, we have the247

following CPO objective with ranking:248

LCPO (πθ, πref) =

E
τ,(x,y1)∼D
y2,...,yK∼A

log
K∏
k=1

exp

(
β log

πθ(yτ(k)|x)
πref(yτ(k)|x)

)
K∑
j=k

exp

(
β log

πθ(yτ(j)|x)
πref(yτ(j)|x)

)
 .
(8)249

We will later discuss some possible choices of250

ranking signals, and show that the ranking can in-251

deed further improve the text generation quality.252

The crucial aspect of CPO is how to generate the253

negative sequences y2, ...,yk ∼ A. For RLHF, the254

negative sequences are simply the ones that humans255

dislike. For the qualities of text generation, we256

implicitly model the sequence-level signal r(x,y)257

such that r(x,yk) < r(x,y1), ∀k ∈ {2, . . . ,K}.258

In other word, we use the reward r(·) that prefers259

the ground truth to any other sequences. Impor-260

tantly, the actual signal r is not parameterized ex-261

plicitly, instead it is represented by the log density262

ratio log πθ
πref

.263

4.1 Connection to noise contrastive264

estimation265

Noise contrastrive estimation (NCE) (Gutmann and266

Hyvärinen, 2010) is a novel estimation technique267

introduced to tackle the computational infeasibility268

of traditional likelihood-based methods in large-269

scale machine learning models, particularly those270

involving high-dimensional data. NCE diverges271

from typical maximum likelihood estimation by272

transforming the problem into a classification task,273

which is deeply connected to both DPO and CPO. 274

In NCE, the model is trained to distinguish between 275

real data and noise/synthetic data. Beyond binary 276

classificaiton, RankingNCE 3 also train the model 277

to rank the real data higher than all the noise sam- 278

ples (Ma and Collins, 2018). 279

There are two important distinctions between 280

CPO and NCE. First, instead of asking the model 281

to distinguish between real data and noise (at which 282

any reasonable language model should already be 283

good), we ask the model to distinguish better than 284

a reference model does, hence making the model 285

better at recognizing natural text. Second, we in- 286

corporate a denser signal by incorporating the simi- 287

larity among embeddings of different samples. The 288

experiments in this paper demonstrate that such a 289

dense training signal consistently improves the text 290

generation quality. 291

4.2 Synthetic negative samples 292

In this work, we propose four ways to generate 293

synthetic negative samples. The first is to autore- 294

gressively generate continuations to the training 295

prefixes from a model trained with the next token 296

prediction loss. We fix the synthetic data genera- 297

tion strategy to be top−k sampling with k = 50. 298

The advantage of this strategy to the forthcoming 299

strategies is that the generated continuations are 300

of higher quality and lead to better downstream 301

performance, while the disadvantage is that sam- 302

pling is slow. We denote these negative samples 303

as autoregressive negatives (AN). One can speed 304

up the sampling process via speculative sampling 305

(Chen et al., 2023) or using a smaller or distilled 306

model, this direction is orthogonal to our approach 307

and can be directly incorporated into our frame- 308

work. 309

The second way is to directly use the continua- 310

tions to other (possibly unrelated) prefixes within 311

the same mini-batch as the negative samples. More 312

specifically, given a batch of prefixes and continua- 313

tions {xi,yi}bi=1, the negative samples to the prefix 314

xi are composed of {yj}j 6=i. Although these neg- 315

ative samples are not difficult to distinguish, they 316

are very simple to create and can be easily scaled 317

up. We denote these as batch negatives (BN). 318

The third way is to perform a token-level per- 319

turbation. Given a sequence y = {y1, . . . , yT }, 320

we randomly select c percent of the positions 321

3Despite the name, it means the model is ranking the real
data highest among all data, rather than learning a total order-
ing.
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{t1, . . . , tj} ⊆ [T ], and substitute each yti indepen-322

dently based on πθ(yti |y1, . . . , yti). We call these323

meanfield negatives (MN). The name is based on324

the fact that we use a fully separable distribution325

to approximate the AR distribution, but note that326

this is not the optimal mean-field approximation.327

Nevertheless, computing this particular meanfield328

approximation does not take an additional cost,329

compared to estimating the best meanfield approx-330

imation. This method does not generate semanti-331

cally meaningful sentences, but it does generate332

hard negative samples, as the model tends to give333

them high probabilities.334

Lastly, for each ground truth continuation, we335

can truncate the continuation at a random position336

and append an extra EOS token to the end. We337

denote this as truncation negatives (TN).338

4.3 Possible ranking signals339

As mentioned before, our reward implicitly prefers340

the ground truth over other sequences, and we do341

not explicitly model the reward parametrically. The342

upside of the implicit representation of the reward343

is that it bypasses the shortcuts (e.g. Krishna et al.,344

2021) that are known to other explicit metrics 4.345

However, since we do not have access to a concrete346

score for the text quality, when presented more347

than one negative samples, we do not have a direct348

ranking among them.349

Prior works on sequence-level training (Liu et al.,350

2022; Bengio et al., 2015) have suggested a vari-351

ety set of signals, including BLEU, ROGUE, and352

BertScore. These signals are usually specific for353

certain downstream tasks like translation or sum-354

marization. In modern era of LLMs, they have355

been shown to not align with human evaluations356

anymore (Goyal et al., 2022). Since our goal is357

to improve text generation or instruction follow-358

ing, the cosine similarity between embeddings is359

a more intuitive signal to measure the distance be-360

tween sequences. The usage of embedding for361

generation quality measurement is also suggested362

in the MAUVE metric (Pillutla et al., 2021).363

When presented K sequences and ranking is de-364

sired, the sequences are ranked based on its cosine365

similarity with the ground truth. Let e1, . . . , eK366

be the embeddings of given sequences and without367

loss of generality assume e1 is the ground truth,368

4Note that here we are not claiming CPO does not exist
any shortcuts. The statement here simply means other existing
metrics have known shortcuts.

we define τ(ei) < τ(ej) if 〈ei,e1〉
‖ei‖‖e1‖ >

〈ej ,e1〉
‖ej‖‖e1‖ , 369

with the lower ranking index indicating the better 370

sample. Using the objective eq. (8), this process 371

gives us denser signals during training, and can 372

lead to better downstream performance. 373

Another good candidate for ranking signal is 374

the reward model score. In fact, since the down- 375

stream performance is judged by a reward model, 376

this will probably yield the best test performance 377

as well. However, one has to train and host an extra 378

reward model, creating extra memory and computa- 379

tion overhead. Therefore, we did not include such 380

signal during training in this work. 381

4.4 Approximate reverse-KL 382

In the subsequence experiment, we show how CPO 383

improves reverse-KL. As we discuss previously, 384

an unavoidable issue of calculating the reverse-KL 385

is we do not have access to the probability of the 386

generated sequences under the true language dis- 387

tribution. However, if we agree that the capability 388

of imitating true language scales with the model 389

size, then we can approximate the true language 390

distribution P with a more capable model P̂ , hence 391

approximating the reverse-KL divergence. Since 392

many of our tasks are conditional by nature, for 393

example, the instruction following task is to gener- 394

ate a response, condition on the input instruction, 395

we further consider the expected reverse-KL diver- 396

gence: 397

Ex

[
DKL

(
Q(·|x)||P̂ (·|x)

)]
≈ 1

|X |
∑
x∈X

∑
y∈Y

Q(y|x) log

(
Q(y|x)
P̂ (y|x)

)
,

(9) 398

where X is the set of inputs (e.g. instructions) in 399

the test set, and Y is the set of generated contin- 400

uations (e.g. responses). During our evaluation, 401

we also notice that a more capable Q tends to gen- 402

erate sequences y with lower probability Q(y|x), 403

compare to a less capable Q. This phenomenon 404

is indeed expected, since a more capable model 405

should be able to generate more diverse continua- 406

tions. To overcome the numerical instability with a 407

vanishing Q, we also use the following surrogate: 408

1

|X |
∑
x∈X

∑
y∈Y

− log P̂ (y|x)
|y|

,

where |y| is the length of y.

(10) 409
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This is the log conditional probability normalized410

by length, and its usage has been justified in Cho411

et al. (2014); Liu et al. (2022); Fu et al. (2023). Par-412

ticularly, Fu et al. (2023) has discussed the use of413

the normalized conditional probability of a capable414

evaluator.415

5 Experiment416

Throughout this section, we use BN for mod-417

els trained with batch negatives, MN for mod-418

els trained with meanfield negatives, TN for mod-419

els trained with truncation negatives, MixN for a420

mixed negative sampling strategies which the de-421

tails should be found in its context, and AN for422

autoregressive negatives. We use ANR for models423

trained with autoregressive negatives and ranking424

signals, similarly we can define MixNR, etc.425

Task and model. We consider two tasks in this426

paper. The first is an instruction-following task,427

trained and evaluated on the Dolly dataset (Conover428

et al., 2023). This dataset is composed of 15011429

total instruction and response pairs. We train with430

7505 sequences and test with the rest 7506. We431

use the pretrained GPT2-XL (Radford et al., 2019)432

and OpenLlama-3B(Touvron et al., 2023; Geng and433

Liu, 2023) as the base model. The second task is an434

open-ended text generation task on the Wikidump435

data(Foundation). We train the OpenLlama-3B436

model to predict the rest 85% tokens given the437

leading 15% tokens.438

Training details. Throughout the experiment,439

we fix the learning rate to be 1e − 5, we use the440

AdamW optimizer with weight decay of 0.05. We441

keep the batch size to be 64. Unless otherwise spec-442

ified, for the baseline model, we train the GPT2-XL443

and OpenLlama-3B with the next token prediction444

loss for 2000 steps, and denote them as the MLE445

models. Using these models as the reference model446

πref , we continue to train with the CPO objective447

either with or without ranking signals, with β = 5,448

for 1000 steps. For both models, each batch during449

training contains 11 negative samples in total. For450

MixN and MixNR, we also use a negative sample451

size of 11, consisting 3 BN, 5 MN, and 3 TN.452

Evaluation. As discussed in Goyal et al. (2022),453

almost all automated evaluation metrics have been454

shown to not align with human evaluations in mod-455

ern era of LLMs, hence we decide to use use GPT-456

3.5 (Brown et al., 2020) as the evaluation tool. For457

each test instruction, we ask the models to gener- 458

ate continuations with various generation config- 459

urations, and query the reward model whether it 460

prefers the generated continuations or the ground 461

truth. A winning rate is then computed over all test 462

instructions. As pointed out in Wang et al. (2023), 463

GPT models are prone to position bias. When eval- 464

uating by asking GPT which of the two inputs it 465

prefers, one can easily manipulate the result by 466

exchanging the input positions. To counter this 467

bias, for each test instruction, we ask both the CPO 468

model and baseline model to generate continua- 469

tions, and we compare each of them to the ground 470

truth to calculate the winning rate. Now since both 471

models’ generations suffer from the same position 472

bias, we can meaningfully compare the difference 473

between their winning rates against the ground 474

truth. 475

The query template is the following: “For 476

the following query to a chatbot, which 477

response is more helpful?\n Query: {}\n 478

Response A: {}\n Response B: {}\n State 479

only "A" or "B" to indicate which response 480

is more helpful.\n More helpful:” For effi- 481

ciency, we generate and evaluate 1000 samples in 482

the test set. 483

In addition to winning rate, we also evaluate the 484

model performance based on reverse-KL and nor- 485

malized log conditional probability, as described in 486

section 4.4. 487

Weight-space ensemble. Previous works (Liu 488

et al., 2022) have also suggested to combine the 489

newly proposed loss function with the MLE train- 490

ing objective LMLE + αLCPO, the downside of 491

combining loss functions in this way is that for 492

a different choice of α one will have to retrain 493

the model. To investigate the importance of loss 494

combination, we instead take a similar approach to 495

WISE-FT (Wortsman et al., 2022) and perform a 496

weight-space ensemble. In particular, denote θCPO 497

and θMLE the model parameters trained solely with 498

CPO or MLE respectively, we generate with the 499

interpolated weights θ = αθMLE + (1− α)θCPO. 500

5.1 Instruction-following task 501

On the Dolly instruction-following task, our pro- 502

posed CPO method with various negative sampling 503

strategies consistently outperforms the MLE base- 504

line models. Using greedy sampling with GPT2- 505

XL, the CPO model has a clear margin over the 506

MLE model, and CPO+ANR has a 3.5% higher 507
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Table 1: Study of the effect of dif-
ferent negative samples.

BNR MNR TNR

0.599 0.567 0.601

Table 2: The winning rate of GPT2-XL against the ground truth, samples
generated by greedy decoding, evaluated by GPT-3.5.

MLE ANR MIXNR

α - - 0 0.5 0.7 0.9

WinRate 0.471 0.506 0.476 0.479 0.487 0.485

Table 3: The winning rate of OpenLlama-3B trained with either MLE or CPO+MixNR against the ground truth,
evaluated by GPT-3.5. The samples are generated by various strategies, we only present MLE and MixNR models
here.

Model
Config

k = 50, p = 1 k = 50, p = 0.7 beam= 2 beam= 4

MIXNR 0.591 0.611 0.607 0.568

MLE 0.497 0.517 0.532 0.514

winning rate, see table 2. Keep in mind that the508

CPO process only incur very little computation509

overhead during the actual training. Even if we510

generate the negative samples autoregressively, this511

cost is only offline and is one-time.512

The improvement on OpenLlama-3B is more sig-513

nificant: CPO+ANR has a 13.8% higher winning514

rate than the MLE baseline, and CPO+MixNR has515

a 9.8% higher winning rate in table 4. We also516

observe that WISE-FT has a positive impact on the517

model. Heuristically, for OpenLlama-3B, a smaller518

α is preferred (more emphasis on the CPO weights)519

(table 4), and the reverse holds for GPT2-XL (ta-520

ble 2). We hypothesize that the choice of α should521

depend on model parameters: if the model is more522

capable, then it can benefit more from CPO. Here523

we show the existence of a good α, and we leave524

further exploration to future research.525

Generation configuration. In addition to greedy526

decoding, we also experiment with different choice527

of sampling strategies. We test with various set-528

tings of top-k top-p sampling, as well as different529

length of beam search. In all settings, CPO has530

consistently demonstrated a superior performance531

to MLE table 3.532

Effect of different negative samples. We per-533

form a study on the effects of different negative534

sampling strategies, the results are presented in ta-535

ble 1. We first train the OpenLlama-3B model with536

MLE loss for 1000 steps, then we continually train537

with CPO for 200 steps. For every ground truth538

sequences, we use 4 negative sequences. In this539

setting, we always use the ranking information to540

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Values

MLE

MixNR

MLE

MixN

MixNR

M
et

ho
ds

3.21

2.3

3.31

3.16

2.84

Reverse-KL, GPT2XL
Log-normalized Cond Prob, OpenLlama-3B

Figure 1: Reverse-KL and negative log-normalized
conditional probability of different negative sampling
strategies. Smaller numbers indicate better quality.
CPO consistently outperforms MLE. CPO+ranking in-
formation also outperforms CPO without ranking infor-
mation.

train CPO. We observe that the effects of BNR and 541

TNR on the reward model preference is similar, 542

and they perform slightly better than MNR. 543

Reverse-KL. The reverse-KL (eq. (9)) and 544

negative log-normalized conditional probability 545

(eq. (10)) metrics are reported in fig. 1. Smaller 546

numbers indicate higher quality for both metrics. 547

MixNR and MixN both demonstrate improvements 548

over the MLE model. Since these metrics mea- 549

sure how likely the generated texts are under the 550

(approximated) language distribution, these results 551

serve as complementary explanation to CPO’s im- 552

provement in reward model scores. 553
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Table 4: The winning rate of OpenLlama-3B trained with CPO and MLE against the ground truth data in Dolly,
sampled by greedy decoding, evaluated by GPT-3.5. MLE1, ANR and AN are trained for 200 steps, the rest
models are trained for 1000 steps. The best CPO model outperforms the MLE baseline by 13.8% winning rate.

MLE1 ANR AN MLE2 MIXNR MIXN

α - - - - 0 0.1 0.3 0.5 0.7 0.9 -

WinRate 0.505 0.643 0.56 0.522 0.608 0.620 0.614 0.610 0.601 0.550 0.576

Instruction: Do you prefer a Tesla model S or a Porsche Taycan
MLE response: S
CPO response: ? While both are excellent cars, if I had to choose between the two, I would go
with the Tesla model S. The Tesla model S has a larger battery size (92 kWh vs 79 kWh), faster
charging capabilities (230 kW vs 180 kW), and has a better range (418 miles vs 318 miles). The
Tesla model S also feels more powerful and is easier to drive.

Table 5: OpenLlama-3B’s winning rate against the
ground truth continuation on Wikidump. The model
is trained with either MLE or CPO+BNR. Weight en-
semble is adopted. The best CPO model outperforms
the MLE baseline by 3% winning rate.

MLE BNR

α - 0 0.5 0.7 0.9

WinRate 0.508 0.455 0.505 0.5 0.538

5.2 Open-ended text generation task554

We further test OpenLlama-3B’s ability on an open-555

ended text generation task with CPO. Using the556

Wikidump data (Foundation), for each test sample,557

we take its first 15% tokens as the prefix and train558

the model with CPO on the rest 85%. For nega-559

tive sampling, we use four BNR examples. The560

results table 5 indicates that with a correctly picked561

weight interpolation coefficient α, CPO can greatly562

improve the model’s winning rate against the MLE563

baseline by 3%. The results also have a different564

pattern compared to the instruction-following task:565

the optimal choice of α shows a reverse trend. With566

the Dolly dataset we observes a small optimal α,567

but on the Wiki dataset we see a large optimal α.568

5.3 What type of generations do CPO tend to569

create?570

Investigating the generations of CPO vs those of571

MLE, we notice that CPO model tends to create572

more detailed continuations/responses to given pre-573

fixes/instructions, partly explaining why these gen-574

erations are preferred by GPT reward. As the sam-575

ple demonstrates, the CPO response appears to be 576

more helpful with more details. 577

6 Conclusion 578

In this paper, we propose an auxiliary CPO loss 579

function for SFT, it can be used with or without 580

ranking signals depending on the quality of the 581

negative samples. We investigated several ways 582

to generate the negative samples, each with its 583

own pros and cons. Experimentally, we show that 584

both GPT2-XL and OpenLlama-3B models benefit 585

from training with our proposed CPO objectives. 586

On Dolly instruction-following task, OpenLlama- 587

3B+CPO has a winning rate 13.8% higher than 588

MLE; GPT2-XL has a winning rate 3.5% higher. 589

On Wikipedia text generation task, OpenLlama- 590

3B+CPO has a winning rate 3% higher than the 591

MLE baseline model. It is interesting to explore 592

other ways to efficiently generate high-quality neg- 593

ative data beyond the autoregressive fashion. One 594

possible direction is to consider Langevin dynamic 595

sampling, which samples all tokens in parallel. 596
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